
the rules
Equipment
Code Monkey Island Gameboard, 12 monkey figurines
(three of each color), 54 Guide cards, 16 Fruit cards, 10
Boost in a Bottle cards.

The Goal
Get all three of your monkeys around the board and into
the Banana Grove before anyone else can!

gameplay
How to earn and use moves
Guide Cards allow your monkeys to move around the
board, but only when the conditions are just right! Look
at ALL of the monkeys on the board (even other players’
monkeys) to see if your Guide Cards will earn you
moves. Remember that only your monkeys can move
forward on your turn.

On each turn
Select one Guide Card from your hand, read it out loud,
move ONE of your monkeys, then discard that card and
draw a new one.

Select three monkeys of the same color. Place two in the
corresponding start circle, and one on the first tile
leading from the start circle.
 Shu e each deck, place them down on the marked
spots on the board, then deal 3 Guide Cards to each
player, and choose a player to start. Monkeys move
counter-clockwise around the board.

Setup

1

Moving backwards
If one of your monkeys is moved backwards past the exit
of your Start Circle, that monkey can then enter the
Banana Grove without circling the board.

Knocking back
If you land on or are moved back to a tile with another
monkey already on it, that monkey is knocked
backwards to the nearest open quicksand tile.

Quicksand
If one of your monkeys lands on or is moved back to a
quicksand tile, it becomes stuck and can’t be moved for
one round! Lay the monkey on its side while it’s stuck.

Landing on Fruit
If one of your monkeys lands on a Fruit tile, draw a Fruit
card, read it out loud, play it immediately, and then
discard it. The e ects of the card only apply to the
monkey that landed on the tile. Fruits will often give your
monkey a significant boost, but beware of the rotten
fruits that make your monkey sick!
 If you are moved to a Fruit tile on another player’s
turn, do not draw a Fruit card.

Landing on Bottle Tiles
If a monkeys lands on a Bottle tile, draw a Boost in a
Bottle card and set it face up at the edge of the board.
The next monkey (of any color) that lands on that tile will
receive a boost equal to the number “in the bottle”.
 Once a monkey has used the boost, put the card at
the bottom of the Boost in a Bottle deck.
 If you are moved to a Bottle tile on another player’s
turn, do not draw a Boost in a Bottle card or use a boost
that is already in the bottle.

2

Entering the Banana Grove
Once one of your monkeys makes it all the way around
the island and back near its Start Circle, it can then be
moved up it’s colored path into the Banana Grove. You
may only enter the Banana Grove through your colored
path. When one of your monkeys enters the Banana
Grove, you earn 10 bonus moves that you must use
immediately on another one of your monkeys.

the guide cards
Count Cards
Some Count Cards will ask you to move a certain
number of spaces for each time a condition is true.
 For instance, a Count Card might say “For each
monkey on a rock, move forward 3 spaces.” If you look at
the board and see that there are 3 monkeys sitting on
rock tiles, then you get 9 moves!

Check Cards
Some Check Cards allow you to move however many
spaces you want within a range when a condition is true.
 For instance, a Check Card might say “If a monkey is
on a rock, move between 1 and 8 spaces forward.” If you
look at the board and see that there’s at least one
monkey on a rock, then you get to move UP TO 8 spaces
forward! So if your monkey is only 5 spaces away from a
fruit tile, then you could choose to move 5 spaces
forward out of the possible 8.

Bug Cards
Bug cards can send monkeys backwards - even your
own! Play them carefully!

3

The Explorer’s Guide helps players ages 10+
learn how the game mechanics of Code Monkey
Island can be used to write a real computer
program. It introduces players to basic
programming syntax and application, and utilizes
“pseudo code” (code written in plain English) to
make these sometimes-complex concepts as
understandable as possible.

Parents: we highly suggest that you read the
Explorer’s Guide with your child. We also
recommend reading through the Explorer’s
Guide a few times on your own first, so that you
can more easily help your child along if they get
stuck at any point.

Once you and your child have become
comfortable with the concepts taught in this
Guide, you can visit the following websites to
continue your programming education for free!

 1.) http://codecampus.com

 2.) http://codecademy.com

 3.) http://scratch.mit.edu

the explorers guide

4

Step 1: If you have all the right ingredients (peanut

butter, jam, and bread), begin making the sandwich.

Otherwise, go buy the right ingredients!

Step 2: Take out two slices of bread.

Step 3: For each ingredient, use a knife to spread

that ingredient on its own slice of bread

Step 4: Put one slice of bread on top of the other

Step 5: Take one bite at a time until the sandwich is

gone!

 Imagine that your friend has asked you to write down

a set of instructions for making a PB&J sandwich. Your

instructions might look like this:

You can think of a program as a set of instructions like

the one above. Computers use programs to make things

happen, just like your friend will use your instructions to

make a delicious sandwich!

chapter 1

what is a program?

5

Now that we know that a program is just a set of

instructions, let’s start writing a program that asks the

computer to make us a virtual PB&J sandwich.

 Before we can do that, though, we need our program

to know that we have all the right ingedients. The first

thing we need to learn about are variables.

What are variables?
When you are playing Code Monkey Island and your

monkey lands on a Bottle tile, you get to draw a card

with a boost on it, like this one:

 Then, you put the boost inside the

 bottle for another monkey to find.

 The bottle stores the boost for later!

 When we write programs, we use

 things called variables to store

 values (like numbers or words) so

 that we can use those values later.

 The bottle is a great example of a

 variable. It stores the value of the

 boost so that another monkey can

use that boost later.

 If we wanted to tell another player how big of a boost

the bottle is storing, we might say:

BOOST

14

chapter 2

variables

“The boost in the bottle is worth 12 spaces”

#

 But how would we tell that to a computer? Since

computers do not speak the same language that we do,

we will use a program to help us translate.

How to create a variable
Remember that the bottle is our variable, and that it is

storing the value of the boost. There are three steps to

creating a variable in a program.

 First, we need to give a name to our variable so that

we can easily remember what it is storing. There are only

two rules when naming a variable:

Other than these two rules, we can name our variable

whatever we like. Since our bottle is the variable, and

what it is storing is the boost, let’s call our variable

bottle_boost. Our new name begins with a letter. It does

not contain spaces (we can replace spaces with an

underscore). It helps us remember that our variable is the

bottle, and that the value it will store is the boost. Perfect!

 Second, we will use an equals sign to tell the program

that bottle_boost is going to store something inside of

itself.

Third, we will tell it the value of the boost. We drew a

card with a value of 12, so we will tell our variable to hold

on to that value by putting 12 on the other side of the

bottle_boost =

1.) A variable name must begin with a letter

2.) A variable name cannot contain spaces

7

“The boost in the bottle is worth 12 spaces”

bottle_boost = 12

check_card = 6

total_moves = check_card + bottle_boost

total_moves = 5 - 3

bottle_boost = 12

equals sign:

Now our program understands that our bottle is storing a

value of 12. Compare this with the sentence we used to

tell the other player how many spaces were in the bottle:

They are saying the exact same thing, just di erently!

 Variables can store a lot of things, like equations. For

example, we could store this equation in a variable:

The program can do math, so it understands that the

total value stored inside of total_moves is equal to 2.

 We can also store other variables inside of our

variable. For example, let’s say that we are playing a

round of Code Monkey Island, and draw a Check card

worth 6 moves:

Now, let’s add that to our boost from earlier, and store

the total amount of moves we can earn in total_moves:

8

 Since we know that bottle_boost is equal to 12, and

check_card is equal to 6, we can add them together and

store their total value of 18 inside of total_moves.

 Finally, we can also store words inside of variables.

Let’s say that our friend Ben wants to store the name of

the city he lives in inside of a variable. Ben is going to

use what we just learned to create a name for his

variable and store a value inside of it.

Programs have a much smaller vocabulary than us, and

they do not understand a lot of the words we use. We

put regular words inside of quotation marks to tell the

program that it does not need to understand those

words, it just has to store them so we can use them later.

 Now that Ben has created a variable, he could write a

program about where he lives, and use his my_city

variable instead of the full name of his city:

Now, when Ben asks the program to read his sentence

back to him, it will look like this:

my_city = “New York City”

Hi! My name is Ben. I live in my_city, and I love it there!

my_city is one of the biggest cities in the world.

Hi! My name is Ben. I live in New York City, and I love it

there! New York City is one of the biggest cities in the

world.

9

_________________ = _________________

_________________ = _________________

Your turn!
Create one varable to store your name, and another

variable to store how old you are. Then, write in the

correct values in each variable after the equals sign. You

can name your variables whatever you like, but try to

give them a name that will help you remember what they

are storing.

Now that you have created your variables, insert the

names of your variables into the paragraph below:

Now, pretend that you are the program! Replace the

names of the variables above with the values they store

to translate the message:

Hello there! My name is ________________________.

I am ________________________ years old, and I am

already learning how to use variables! Isn’t that cool?

name variable

age variable

Hello there! My name is ________________________.

I am ________________________ years old, and I am

already learning how to use variables! Isn’t that cool?

10

the story so far...
Before we go on, let’s take a moment to review

everything we have learned so far:

We’re making great progress! Keep going and we will

have a program that makes us sandwiches in no time.

We learned what a program is

A program is a set of instructions we write for

computers. The computer reads those instructions,

and then does what the instructions tell it to do!

We learned what a variable is

A variable is like a bottle - it’s an object that stores

something inside of itself so that it can be used later. In

programs, variables store values like numbers or words.

We learned how to create a variable

Variables have three parts: a name, an equals sign, and

the value being stored. Variable names must start with

a letter and cannot contain any spaces, and they can

store either numbers or words.

my_age = 12

color = “blue”

dads_age = my_age + 30

11

Remember: before making our sandwich, we need to tell

our program that we have all the right ingredients. Now

that we know about variables, we are one step closer.

 A program has a much smaller vocabulary than you

and me. But it does know two special words - true and

false - that can help us tell it all sorts of things.

 Read these statements, then circle the correct

response - go to your kitchen and take a look around if

you are not sure:

Great job! Now that you have selected the correct

responses to those statements, we can use variables to

store your responses. For example, here is how Ben

responded to these statements:

And here is how he would store those responses: inside

of variables:

I have jam. TRUE or FALSE

I have peanut butter. TRUE or FALSE

I have bread. TRUE or FALSE

I have milk. TRUE or FALSE

I have cookies. TRUE or FALSE

has_milk = true

has_cookies = false

chapter 3

true or false?

12

has_jam = _______________

has_peanut_butter = _______________

has_bread = _______________

 Remember from the last chapter when Ben was

storing the name of his city inside of a variable, and he

had to use quotation marks around the words?

He had to do this because the program does not know

what words like New York City, banana, monkeys, etc.

mean. The quotation marks tell the program that it does

not have to understand these words, it just has to store

them inside of the variable so that we can use them later.

 true and false are special words, though. Since the

program does know what these words mean, Ben will

not put them in quotation marks. If he does put them in

quotation marks, the program will think they are regular

words and ignore them!

Your turn!
Now that Ben has shown us how to store the values of

his responses inside of variables with true and false, let’s

do the same for your responses from before.

 Look back at your responses on the previous page,

and store them inside of the variables below without

using quotation marks:

Great work! Now our program knows what ingredients

we have and don’t have.

my_city = “New York City”

13

Let’s say that Ben wants to go play outside. When he

goes to ask his parents for permission, they say, “If your

homework is done, go play outside!” Here, Ben’s parents

have set a condition: Ben’s homework must be done

before he can go outside.

 Here’s another scenario: a

 Check Card from Code

 Monkey Island. This Check

 Card says “If any monkey is

 on a tree, move between 3

 and 8 spaces forward.” This

 means that if there is at least

 one monkey on a tree tile,

 you will be able to earn

 moves from this card. But if

 there are no monkeys on tree

 tiles, then you will not be able

earn moves from this card.

 Both of these situations are examples of conditional

statements, which are used to help people and

programs make decisions based on certain conditions.

As you can see, a basic conditional statement has two

parts: one part checks if the condition is met, and the

other part is an action that will be taken only if it is met.

Let’s learn how conditional statements can help us with

our sandwich program.

chapter 4

conditional statements

If any monkey is
on a tree,

CHECK

move between 3 and
8 spaces forward.

14

How to write a conditional statement
Programs use conditional statements the same way that

we do. For example, here is how we would write out

Ben’s parents’ conditional statement in a program:

There are a lot of new things happening here! Let’s go

through this conditional statement step by step.

 First, we have a special word if that the program

understands, just like the words true and false. This

special word tells the program that we are starting to

write a conditional statement.

 Next, we created a variable called homework_done

that stores a value of either true or false.

 Our program does not know what is stored inside of a

variable until we tell it to check. When we want our

program to check what’s already inside a variable, we

use two equals signs right next to each other, which the

program translates as “is equal to”. The program checks

to see whether the value inside of homework_done is

equal to true using two equals signs.

 If (and only if) the variable homework_done is equal

to true, then the program will perform the action written

on the next line. It uses another special word say, which

tells the program to say something to us.

 But if homework_done is equal to false, then the

program will not say or do anything underneath the first

line.

 That is all there is to it! Let’s compare our conditional

statement with what Ben’s parents told him:

if homework_done == true

 say “Go play outside”

15

Your turn!
Translate the following sentence into a conditional

statement that a program could understand (look at the

example above if you get stuck):

Else / Otherwise
A conditional statement can include an extra part that

tells the program what to do if the condition is not met.

For example, Ben’s parents might say, “If your homework

is done, go play outside! Otherwise, go read a book.”

 As another example, think about this

 Check Card. It says, “If none of your

 monkeys are in the banana grove, move

12 12 spaces. Otherwise, move 5 spaces.”

Here, Here, the condition is that none of your

monkeys monkeys can be in the banana grove. If

 that’s true, then you get to move 12

if homework_done == true

 say “Go play outside”

If your homework is done, go play outside!

If none of your monkeys
are in the banana grove,

move 12 spaces.

Otherwise, move 5 spaces.

%()*+

If it is raining, bring an umbrella.

16

Your turn!

 To practice what we learned in this

 chapter, let’s translate this Check

 Card into a conditional statement

 that a program could understand.

 Fill in the missing words to complete

 the conditional statement! Then,

 choose a new Check card and

 translate it into a conditional

 statement on a new sheet of paper.

if homework_done == true

 say “Go play outside”

else

 say “Go read a book”

_________ monkey_on_tree == ______________

 say ______________________

 say “move 6 spaces”

If any monkey is on a
tree, move 10 spaces.

%()*+

Otherwise, move
6 spaces.

17

spaces. But if it’s not true - for instance if you have one

or more monkeys in the banana grove - then you will

perform the second action, which gives you 5 moves.

 This works in programs, too. Programs use the word

else instead of “otherwise” to perform an alternative

action when the first condition is not met, like this:

the story so far...
Let’s review what we learned in the last two chapters:

We learned about the words true and false

We make decisions all the time about whether things

are true or false. We can have programs remember our

decisions and use them later by storing the words true

and false inside of variables.

programming_is_fun = true

We learned about conditional statements

Conditional statements help programs make decisions

by asking them to check if a condition is met before

performing an action. We use two equals signs to

check what is stored inside of a variable.

if raining == true
 say “Better grab an umbrella”

if my_city == “New York City”
 say “You should visit the Statue of Liberty!”

When we want the program to do some other action if

the condition is not met, we use the word else:

if raining == true
 say “Better grab an umbrella”
else
 say “Leave the umbrella at home”

18

chapter 5

AND, OR, and NOT
We have learned about a few special words that

programs can understand and use, like true, false, if, and

print. Now, let’s learn about AND, OR, and NOT. These

words are called logical operators, because programs

use these words to compare the trueness or falseness of

two or more statements at once.

 Let’s say that Ben is making a shopping list:

You can think about the items on Ben’s list as variables.

Since he does not have any of the items on his list in his

kitchen, here is what his variables would look like:

When Ben goes to the grocery store, he accidentally

forgets his list at home. He does his best to remember

what was on it, and here is what he ends up buying:

 Broccoli, Carrots, Honey, and Milk.

Buy broccoli AND carrots

Buy sugar OR honey

Do NOT buy peanuts (dad is allergic!)

Buy milk AND eggs

got_broccoli = false

got_carrots = false

got_sugar = false

got_honey = false

got_peanuts = false

got_milk = false

got_eggs = false

19

Once Ben goes home, he decides to write some

conditional statements to make sure he got everything.

 The first sentence on his list is, “Buy broccoli AND

carrots”. The word AND means that both parts of the

sentence have to be true. Ben’s first conditional

statement looks like this:

Remember that we use two equals signs to tell our

program to check what is stored inside of a variable. It

does not know what is inside of the variable until we tell

it to check! Since Ben got both broccoli and carrots, both

of those variables become true, and he does not have to

go back to the store.

 The second sentence on his list is “Buy sugar OR

honey”. The word OR means that at least one part of the

sentence has to be true, even if the other part is false.

Ben’s second conditional statement looks like this:

Since Ben remembered to buy honey, and since his list

said he could buy either honey or sugar, he does not

have to go back to the store.

if got_broccoli == true AND got_carrots == true

 say “Great! I remembered the vegetables.”

else

 say “Uh oh! Have to go back to the store!”

if got_sugar == true OR got_honey == true

 say “Great! I remembered the sweets.”

else

 say“Uh oh! Have to go back to the store!”

20

 The third sentence is “Do NOT buy peanuts.” When

the word NOT is used in a program, it flips the value in

front of it. So NOT got_honey == true would be read by

the program as got_honey == false.

 Now, here is Ben’s conditional statement using NOT:

Your turn!
Ben is tired from all this shopping and writing! Write the

final conditional statement for the milk and eggs, then

circle the statement that the program will say based on

what Ben bought.

 Hint: remember that Ben’s list said, “Buy milk AND

eggs”. Since he only bought milk, his variables are now

got_milk = true and got_eggs = false.

if NOT got_peanuts == true

 say “Great! I remembered not to buy peanuts.”

else

 say “Uh oh! Have to go return the peanuts!”

21

chapter 6

loops
Take a look at this Count card. It says, “For each monkey

on a rock, move 3 spaces.” Let’s say that three monkeys

are sitting on rock tiles. To help us calculate how many

 moves we get from this Count card,

 let’s imagine that we put all three of

 these monkeys into a list, like this:

Now, let’s rewrite our Count card with our new list:

Our next step is to move our monkey. So, we will read

through each of the items in monkey_list one at a time,

and move three spaces for each one, like this:

monkey_list:

- Monkey 1

- Monkey 2

- Monkey 3
move 3 spaces.

For each monkey
on a rock,

COUNT

For each monkey in monkey_list, move 3 spaces.

monkey_list:

- Monkey 1

 Move 3 spaces

- Monkey 2

 Move 3 spaces

- Monkey 3

 Move 3 spaces

22

Did you notice how we repeated the same action for

each item on the list, and then stopped when we ran out

of items? This is an example of a loop.

What is a loop?
A loop is a set of instructions that is repeated each time

a condition is met, or until a condition is met. Once the

condition is no longer met, the loop ends. It is important

to give our loops a way to end, otherwise they would go

on forever.

 We use loops to save ourselves a lot of time when

writing programs. As you read on in this chapter, you will

see how!

Creating a foreach loop
Creating a loop is easy. Let’s use the Count card

example to learn how to make our first loop.

 Remember that our first step was to create a list to

store all of the monkeys on rocks inside of. A list is one

way that a program can know when to end a loop,

because the program knows how big the list is. The loop

repeats its set of instructions for each item in the list.

 To create a list, first we will make a variable. Then, we

will set it equal to all of the items in our list, separated by

commas, like this:

Now, our loop can look through this list. It knows that

there are three items in our list, which means that it has

to repeat itself three times before it ends.

 Our second step is to write the loop itself. Our Count

monkey_list = Monkey 1, Monkey 2, Monkey 3

23

card is an example of a foreach loop. A foreach loop is a

type of loop that repeats itself each time a condition is

met. Let’s take the sentence we rewrote earlier:

and rewrite it again so that a program can understand it:

 First, we have the special word foreach that tells our

program that we are starting to write a foreach loop.

 Next, we tell our loop that it will be looking through all

of the items in the list monkey_list.

 Finally, we tell the loop what it has to do every time it

moves forward in the list. Our loop says that the program

has to move our monkey 3 spaces forward each time it

goes through the list. Since there are three items in our

list, it will perform the action three times and then stop.

Your turn!

For each monkey in monkey_list, move 3 spaces.

foreach monkey in monkey_list

 move monkey 3 spaces forward

monkey_list = Monkey 1, Monkey 2, Monkey 3

move 3 spaces.

For each monkey
on a tree,

COUNT

Turn this Count card into a foreach

loop by creating a list and a loop. It

says, “For each monkey on a tree,

move 3 spaces.” For this exercise,

let’s pretend that there are three

monkeys on tree tiles. Write your

loops in the box on the next page.

Look at the example above for hints!

24

Until loop
We mentioned earlier that there are a few di erent types

of loops. Besides the foreach loop, we will also need to

learn about the until loop to make our sandwich

program.

 Take a look at this count card. It

 says, “Move one of your monkeys

 past one tree tile at a time UNTIL

 you have passed 3 tree tiles.” We

can turn can turn this into a loop, just like we

did did with our other Count card!

 Just like before, we must first

 create something that tells the loop

 when to stop. Instead of a list, this

time we will use a counter. A counter is a regular

variable that keeps count of how many times the loop

has repeated itself. A counter is set to store a value of 0,

and then after every time the loop repeats itself, it adds 1

to itself. Then, we can tell the loop that once the counter

reaches a certain number, it should stop. Since the card

says that we must pass three tree tiles before we can

stop, let’s first create a variable and store a 0 inside of it:

monkey_list = _________, _________, _________,

___________ monkey in ______________

 move forward 3 spaces

tree_tiles_passed = 0

COUNT

Move one of your
monkeys past one tree
tile at a time UNTIL you
have passed 3 tree tiles.

25

Now, let’s create our until loop:

First, we have our counter tree_tiles_passed. Before we

start the loop, we set the counter equal to 0.

 Then, we start our loop. The first line of the loop

basically says, “Until tree_tiles_passed is equal to 3, do

this stu below.” We use the special word until to tell our

program that we are starting an until loop, and then we

set a condition: our counter has to be storing a value of 3

before the loop can end.

 Next, we tell the loop what actions we want it to

perform each time it repeats. The first action is “move

monkey past a tree tile”. Once the loop has done that,

the next action we ask it to perform is to add 1 to

tree_tiles_passed.

 Remember from Chapter 2 how variables can store

other variables? Here, we are asking tree_tiles_passed

to store its own value plus one. Since its value is 0

before the loop starts, we can actually think of it like:

Now, once the loop restarts, the value stored inside of

tree_tiles_passed is equal to 1. It will then move the

monkey past another tree tile, and tree_tiles_passed will

go up by one again, so that it is now equal to 2. After the

until tree_tiles_passed == 3

 move monkey past a tree tile

 tree_tiles_passed = tree_tiles_passed + 1

tree_tiles_passed = 0

tree_tiles_passed = 0 + 1

26

third time that the loop repeats and the monkey is

moved past the third tree tile, tree_tiles_passed will be

equal to 3. Since the loop was waiting until

tree_tiles_passed was equal to 3, it will now stop.

Your turn!
Let’s say that we draw a Count card. It says “Move one of

your monkeys past one vine tile at a time UNTIL you

have passed 3 vine tiles.” Let’s turn this card into a loop!

First, let’s create our counter. Create a variable called

vine_tiles_passed and store a 0 inside of it:

Next, let’s create the top line of our loop. Remember that

we have to pass three vine tiles before the loop ends:

Finally, let’s add the actions that the loop must repeat

each time it starts. The first action has been provided.

Now, make sure the counter goes up by 1 each time the

loop repeats!

_____________________ = ____________

___________ vine_tiles_passed == ___________

 move monkey past a tree tile

 vine_tiles_passed = __________________ + 1

27

the story so far...
Here is what we have learned in the past two chapters:

Phew - now we are ready to make our sandwich program!

We learned about AND, OR, and NOT

These words compare the trueness or falseness of two

statements at once, so that we can decide whether

both of them together are either true or false. When

using AND, both statements must be true for it all to be

true. When using OR, only one of the statements has

to be true for it all to be true. The word NOT flips the

trueness or falseness of the whole statement.

We learned about loops

Loops allow us to repeat the same action every single

time a condition is met, or until a condition is met. We

have to tell a loop how many times it repeats, or else it

will go on forever. To help our loops know when they

have to end, we can use lists and counters.

The two types of loops that we learned about are

foreach loops and until loops. foreach loops repeat a

set of actions each time a condition is met. Typically,

we use lists with foreach loops.

until loops repeat a set of actions until a certain

condition is met. Typically, we set a counter equal to 0,

and then increase its value by 1 each time the loop

repeats itself.

28

chapter 7

making our sandwich
Great work! In the past 6 chapters, we have learned

everything we need to know to write a program that

makes us tasty, virtual sandwiches. Before going on,

though, we recommend going back and re-reading the

entire Explorer’s Guide to make sure you understand

everything. If you are ready to go, let’s get started!

 Remember the instructions we wrote in Chapter 1 for

our friend to help them make a peanut butter and jelly

sandwich?

Let’s turn these instructions into a program using

everything we have learned in the Explorer’s Guide.

 First, we need to check for all the right ingredients. In

Chapter 3, we checked our kitchens for all of the right

ingredients. We created variables for each ingredient -

Step 1: If you have all the right ingredients (peanut

butter, jam, and bread), begin making the sandwich.

Otherwise, go buy the right ingredients!

Step 2: Take out two slices of bread.

Step 3: For each ingredient, use a knife to spread

that ingredient on its own slice of bread

Step 4: Put one slice of bread on top of the other

Step 5: Take one bite at a time until the sandwich is

gone!

29

jam, peanut butter, and bread - and then put true or false

inside of each one depending on whether we had the

ingredients or not.

 In the spaces below, recreate those variables and

store the correct value inside of them. If you need a hint,

go back and re-read Chapter 3!

Great job! Now that we have set our ingredient variables,

let’s write some conditional statements using the word

AND so that our program can check to see if we have all

of the right ingredients or not. If we have all of the right

ingredients, we can keep making our sandwich! But if

not, we will have to go to the store.

Next, let’s create a list to contain our jam and our peanut

butter (but not our bread!):

has_jam = _________________

_________________ = _________________

_________________ = _________________

_____ has_jam == true AND __________ == __________

AND __________ == __________

 say “We have all the right ingredients!”

 say “Take out two slices of bread.”

 say “Uh oh! We have to go to the store.”

ingredients = has_jam , ___________________ ,

30

Last step! Now that we have our list, let’s create a

foreach loop that will make our program spread each of

these ingredients on a piece of bread:

Wonderful! Now that our sandwich is complete, let’s take

a big bite of...wait...where is our sandwich?

 Uh oh. Since our program made us a virtual PB&J, we

won’t really be able to eat it. But maybe our program

can!

 Let’s write one last step in our program that tells the

program how to eat the sandwich it just made. Our

program can finish a sandwich in about 10 bites, so let’s

create a counter that will start counting up to 10 from 0:

Next, let’s setup our until loop:

Well done! We have successfully written a program that

creates (and eats) a PB&J sandwich! Give yourself a pat

on the back. There is a completed version of the

program you wrote on the next page for comparison.

______________ ingredient in ______________

 spread ingredient on bread

 say “Put one piece of bread on top of the other”

bites = ____________

until _________________ == 10

 take another bite

 bites = __________________ + ______

31

has_jam = true

has_peanut_butter = true

has_bread = true

if has_jam == true AND has_peanut_butter == true

AND has_bread == true

 say “We have all the right ingredients!”

 say “Take out two slices of bread.”

else

 say “Uh oh! We have to go to the store.”

ingredients = has_jam, has_peanut_butter

foreach ingredient in ingredients

 spread ingredient on bread

 say “Put one piece of bread on top of the other”

bites = 0

until bites == 10

 take another bite

 bites = bites + 1

If you want to keep practicing what you have learned, try

to write a program that will make you another kind of

sandwich, like a turkey sandwich or a ham and cheese

sandwich. Use ingredients like lettuce, tomato, mustard,

pickles, or anything else you like. Enjoy!

32

